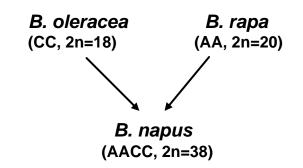
Genome-wide identification and characterization of miRNAs responsive to *Verticillium longisporum* infection in *Brassica napus* by deep sequencing

Longjiang Fan, Dan Shen, Daguang Cai

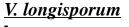
(Zhejiang University/Kiel University)

Wuhan 2014

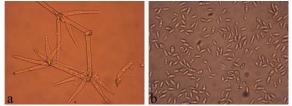


Brassica napus

- An important source for edible vegetable oil and biodiesel worldwide.
- A newly formed amphidiploid species, belongs to Brassicaeae
- Originating from hybridizations between *B. rapa* and *B. oleracea*.
- The diseases of rapeseed crop:
 - Verticillium wilt
 - Blackleg
 - Sclerotinia stem rot

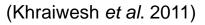


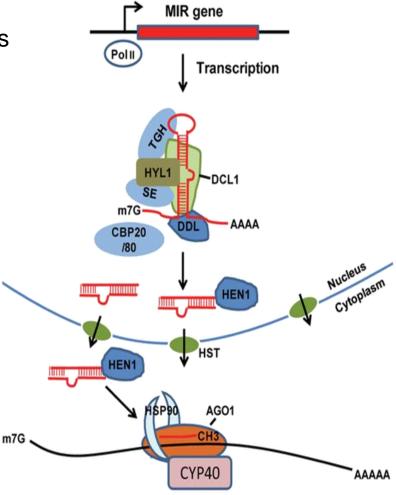
Verticillium wilt in B. napus


- •Soil-borne plant fungus
- •A narrow host range limited to Brassicaceae
- A long infection process
- Stunted growth, leaf chlorosis, early flowering and senescence
- No effective resistance in Brassicaceae

The rapeseed - V. longisporum interaction

- a unique system for investigation:
 - Plant-pathogen interaction
 - Molecular and physiological reprogramming, post-transcriptional gene silencing (PTGS)
 - Gene regulation: miRNAs




miRNA: biogenesis and function

- A class of short, near-ubiquitous and endogenous RNAs of ~21 nucleotides
- Functional component: RISC (miRNA + AGO1 protein)
- Action model: mRNA degradation or translational inhibition
- Roles:

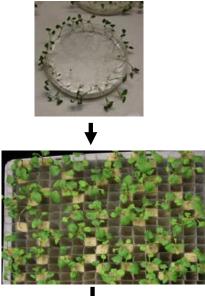
Post-transcriptiponal gene regulation

- plant growth and development
- abiotic stress
- biotic stress

Target Cleavage or Translational Inhibition

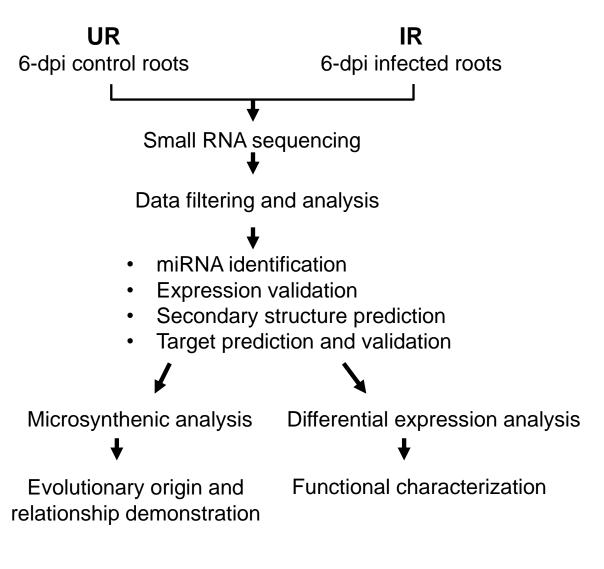
Hypothesis

Plant miRNAs are essential regulators controlling the *B. napus-V. longisporum* interaction by direct or indirect interference with plant defence responses.

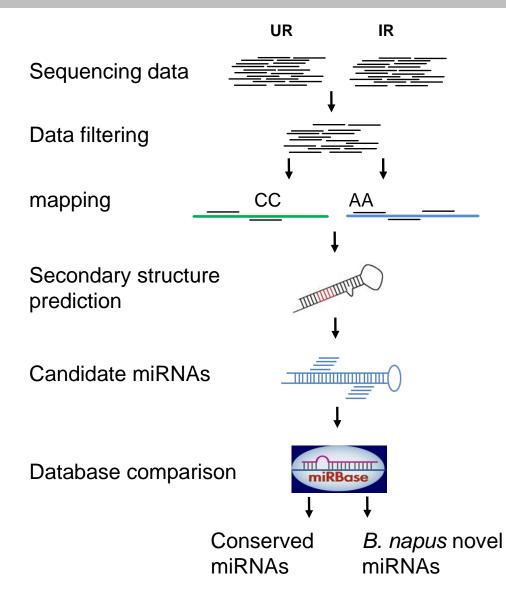

Aims:

- Genome-wide identification of miRNAs in *Brassica napus* based on *B. rapa* (AA) and *B. oleracea* (CC) genome sequences.
- Molecular evolution of miRNAs in *Brassica napus*.
- Identification and characterization of miRNAs responsive to *V. longisporum* infection.
- Possible action model of miRNAs responsive to *V. longisporum* infection.

Infection experiments


Working steps

Express 617



VL+ 🔻 VL-

miRNA identification by deep-sequencing

- **UR**: un-infected roots
- **IR:** infected roots

Conserved miRNAs:

homological to plant miRNAs recorded in the miRBase

B. napus novel miRNAs: only found in *B. napus*

miRNAs of B. napus

www.mirbase.org (Release 20)

B. napus: 92 B. rapa: 43 B. oleracea: 7 Arabidopsis: 337 Oryza sativa: 713 Homo sapiens: 2,578

Identification of miRNAs from *B. napus* (AACC):

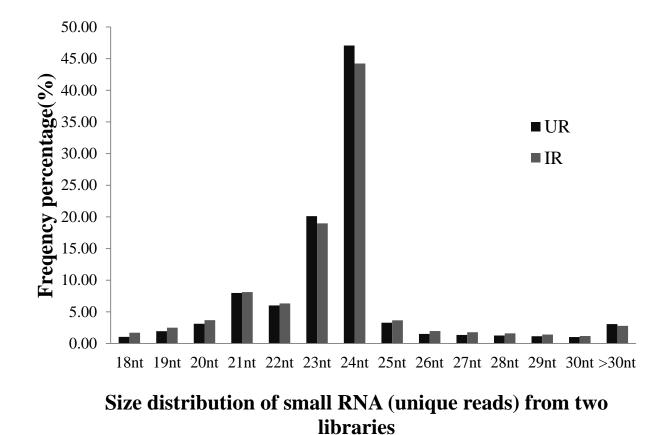
Before 2010:

After 2010:

EST sequences

TC sequences

Brassica rapa (AA) genome sequence (2011) *Brassica oleracea* (CC) genome sequence (2013)

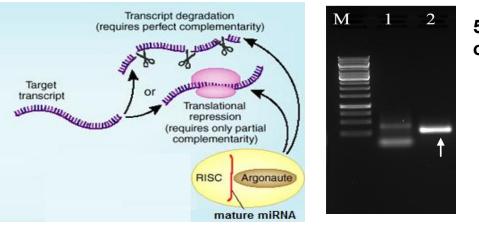

BAC sequences

A. thaliana sequences

Small RNAs from two sequenced libraries (UR and IR)

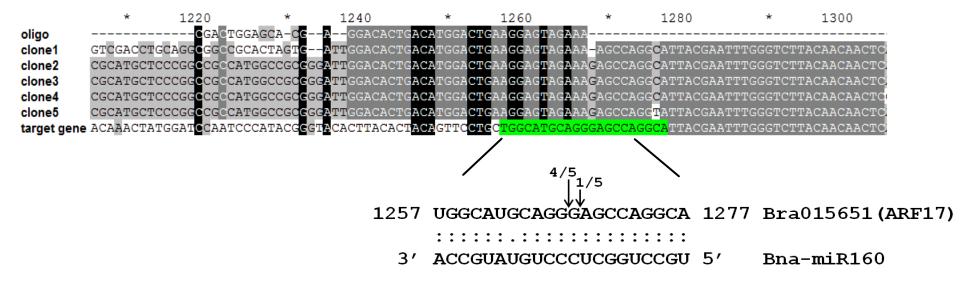
	UR		IR		
Small RNAs	Unique	Abundant	Unique	Abundant	
Total number of reads	5,085,622	16,926,646	4,223,911	17,157,110	
Mapped to B. rapa or B. oleracea	2,335,615	9,899,731	1,851,246	8,354,172	
genome	(45.9%)	(58.5%)	(43.8%)	(48.7%)	
D	1,192,848	7,107,303	955,669	6,109,185	
B. rapa	(23.5%)	(42.0%)	(22.6%)	(35.6%)	
Delement	1,820,776	8,797,610	1,443,201	7,369,932	
B. oleracea	(35.8%)	(52.0%)	(34.2%)	(43.0%)	
Mapped to B. rapa or B. oleracea	474,831	1,510,735	379,536	1,125,027	
transcripts	(9.3%)	(8.9%)	(9.0%)	(6.6%)	
D	267,038	855,763	214,143	633,906	
B. rapa	(5.3%)	(5.1%)	(5.1%)	(3.7%)	
Delement	301,118	1,021,962	242,075	760,040	
B. oleracea	(5.2%)	(6.0%)	(5.7%)	(4.4%)	

Size distribution of two sequenced libraries (UR and IR)


10

B. napus miRNAs identified from two libraries

Origin	Conserved miRNAs	Novel miRNAs	Total
miRNAs in AA	194	235	429
miRNAs in CC	166	298	464
Total	360	533	893


- 360 conserved and 533 *B. napus* novel or specific miRNAs were identified.
- *B. rapa* (A A) and *B. oleracea* (CC) genomes almost donate an equal number of miRNAs to *B. napus.*

miRNA target validation: 20 miRNA targets have been validated

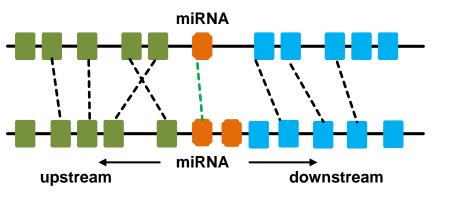
5' RACE based identification of miRNA target genes of *B. napus*

M: 1kb ladder
1: touch-down PCR for miR160 target, Bra015651
2: nested PCR miR160 for miR160 target, Bra015651
The arrow-marked nested-PCR products cloned for sequencing

miRNA targets: 20 targets were selected and validated

3' AGGGCUGGACGUGGUUCGCU 5' Bna-miR168

4/4


1239 UGGCAUGCAGGGAGCCAGGCA 1259 Bra003665 (ARF17)

5/5

4/4 928 GUUACUUAUAAUACUCUCAUA 948 Bra027658(PPR) :: :::::::::::::: 3' CACUGAAUAUUAUGAGAGUAU 5' Bna-miR400

Synteny analysis

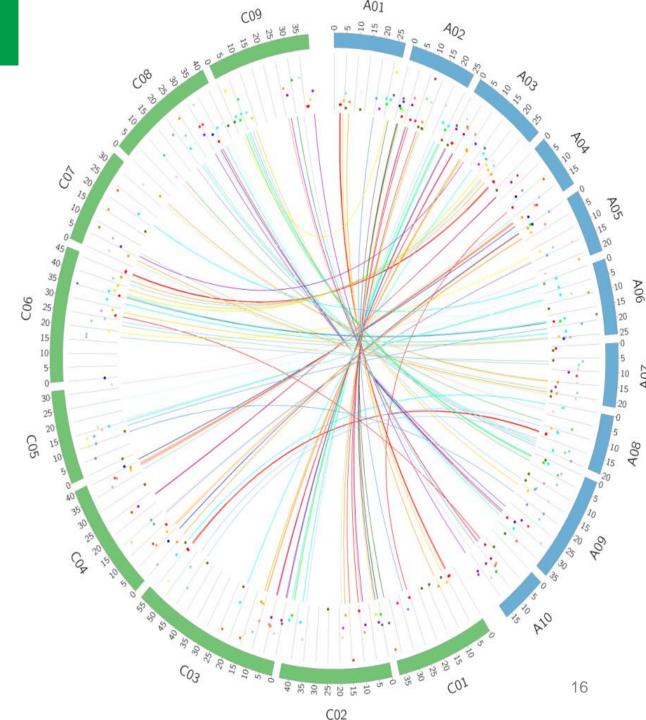
Synteny analysis on the basis of miRNAs and their two flanking protein coding genes revealed genomic synteny of miRNAs between A and C genomes

- miRNA similarity comparison between AA and CC
- 2. 10 flanking protein coding gene of miRNA similarity comparison between AA and CC
- 3. Determine syntenic miRNAs

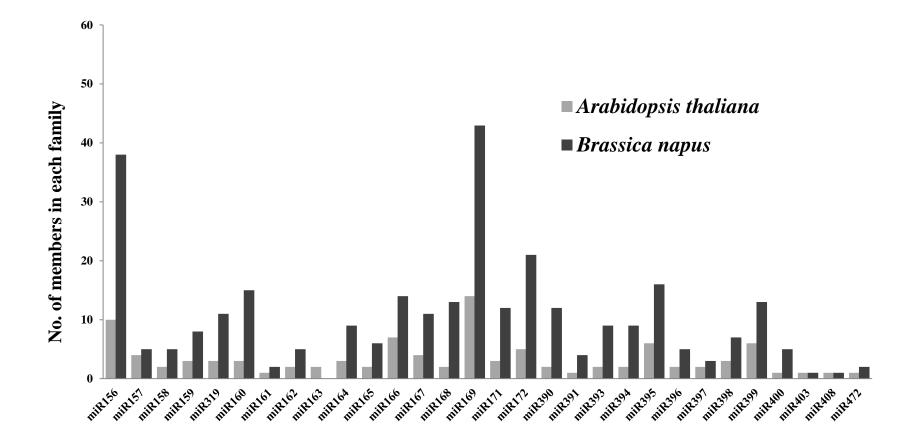
Table: Synteny of conserved miRNAs identified by this study

Syntenic type	miRNA_AA	miRNA_CC
Both streams		128
Single stream		9
None stream		33
AA/CC specific	61	42

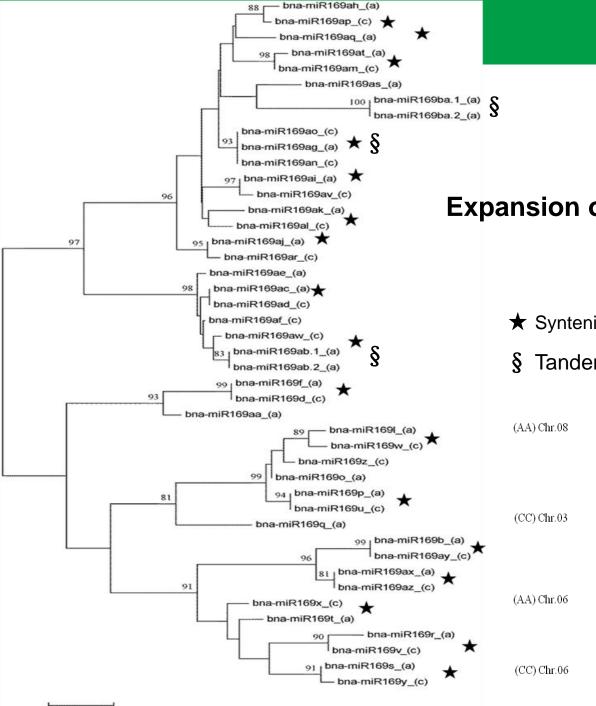
AA/CC syntenic analysis of *B. napus* miRNA


Origin	Туре	AA	AA-CC- syntenic pair	CC
Conserved	Syntenic miRNAs	137	(137)	137
miRNAs	Unique miRNAs	61		42
Specific	Synteny miRNAs	4	(4)	4
miRNAs	Unique miRNAs	216		282

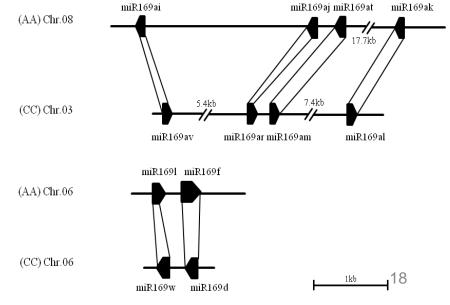
•Most of conserved miRNAs from AA and CC genome are paralogous.


•Most of *B. napus* specific miRNAs are AA-/CC- genome specific.

Syntenic MIRNA loci of conserved miRNAs identified from *B. napus* in *B. rapa* (AA) and *B. oleracea* (CC) genomes.


Syntenic miRNA pairs are evenly scattered over the whole chromosomes of *B. napus*

Expansion of miRNA families in B. napus

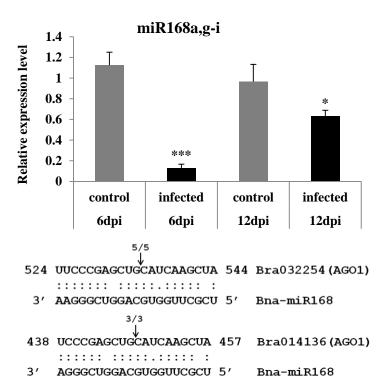

miRNA families

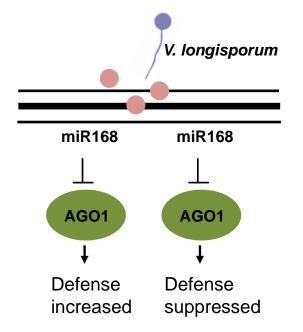
0.1

Expansion of miR169 family in *B. napus*

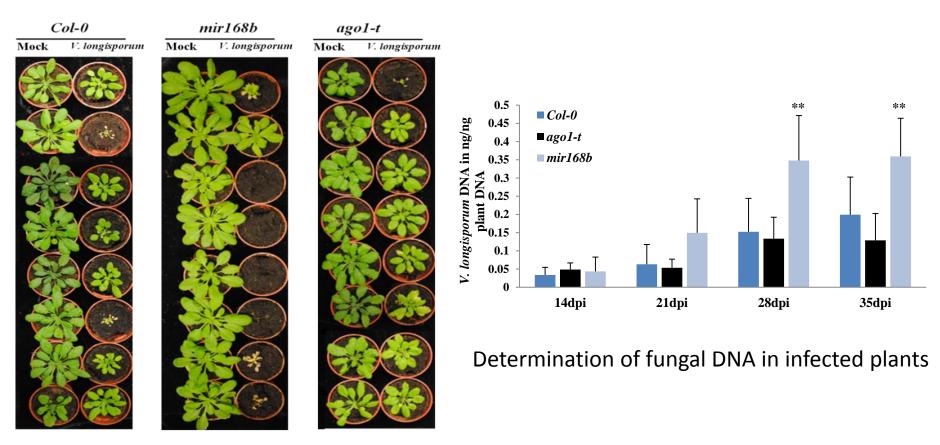
- \star Syntenic between AA and CC genome
- § Tandem duplication

Identification of miRNAs responsive to V. longisporum infection

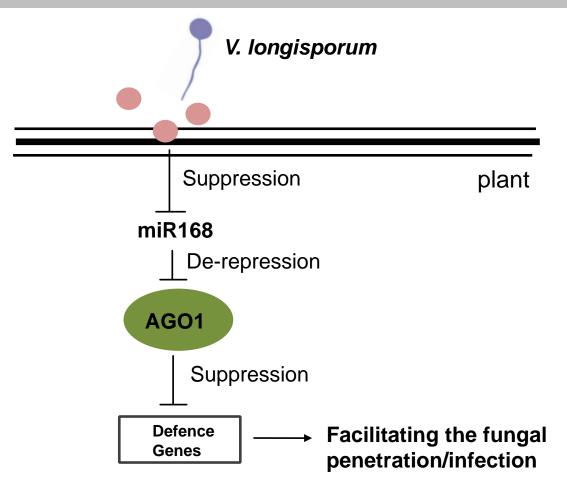

		-					
fold change,log2(IR/UR)			No. of reads		Fold change		
-7 -6	-5 -	4 -3	<u> -2 -1 0</u>	-	UR	IR	
				bna-miR399d-k	21	0	-6.95
				bna-miR168g-i	104182	18466	-2.52
				bna-miR4414b	23	6	-1.96
				bna-miR160a,c-n	2399	732	-1.73
				bna-mir398a-c	31	10	-1.65
				bna-miR169ab.1,ac-af	1354	444	-1.63
				bna-mir164b-f	2199	732	-1.61
				bna-mir167i	405	138	-1.57
				bna-mir169aq,ar	166	60	-1.49
				bna-mir168j-m	41	15	-1.47
				bna-mir164,g-i	10479	4005	-1.41
				bna-mir3991-m	33	13	-1.36
				bna-mir319a-e	111	45	-1.32
				bna-mir390a-k	6239	2863	-1.14
				bna-mir395d,f,m-p	84	39	-1.13
				bna-mir171k	64	31	-1.07
				bna-mir5654a-c	4878	2401	-1.04
			=	bna-mir160o	34	18	-0.94
			=	bna-mir162b-f	954	537	-0.85
			=	bna-miR167j	610	344	-0.85
			=	bna-mir408	167	97	-0.80
				bna-mir403	899	523	-0.80
				bna-mir168a,c-f bna-	64053	39103	-0.73
				mir159,a,b.1,c,d.1,e	1019	634	-0.70
			_	bna-mir396d,e	674	423	-0.69
Fold	No. of	reads		bna-miR169b,aw-az	93	61	-0.63
change	UR	IR		bna-miR165a-f	28731	19391	-0.59
0.80	1123	1972	bna-miR172a, e-j				
1.03	44	91	bna-miR394a-i				
1.12	184	406	bna-miR1885a-c				


- 119 conserved miRNAs (20 miRNA families) were down-regulated after *V. longisporum* infection
- 19 conserved miRNAs (3 miRNA families) were up-regulated after *V. longisporum* infection
- The sequencing data can be confirmed by qRT-PCR analysis
- Target genes are dominantly involved in:
 - Stimuli response
 - Development
 - Metabolic processes

A set of miRNAs were responsive to VL infection


miRNA	Target	Roles	Response to VL
miR168	AGO1	miRNA synthesis, virus infection	Down-regulated
miR164	CUC2	Leaf formation	Down-regulated
miR160	ARF17	Regulate early auxin response gene	Down-regulated
miR1885	NBS-LRR domain	Plant resistance gene	Up-regulated

miR168- AGO1 interference determines the susceptibility to VL-infection



Infection experiments with Arabidopsis *mir168* and *ago1* knockout mutants

• Disease symptoms: *mir168b* > *Col-0* > *ago1-t*

• Fungi biomass: mir168b > Col-0 > ago1-t

A possible action model of miR168-AGO interference

V. longisporum-triggered down-regulation of miR168 leads to de-repression of AGO1 and suppression of plant defence mechanisms, consequently facilitating fungal infection process.

Summary

- 1. Combination of AA- and CC- genome sequence facilities genome-wide miRNA identification in *B. napus*.
- 893 miRNAs (360 conserved and 533 specific) were identified from *B. napus*, and A- and C- genome donate an equal number of miRNAs to *B. napus*
- 3. 137 syntenic pairs of conserved miRNAs were identified. Most of conserved miRNAs from AA and CC genome are homological and most of *B. napus* specific miRNAs are AA-/CC- genome specific.
- 4. Our results provide further data for understanding the evolution of *B. napus* polyploid genome.

- 5. More than 90% miRNAs have predicted targets and 20 miRNAs targets were validated.
- A set of miRNAs (especially, miR168, miR160, miR164, miR167, miR1885) is highly responsive to V. longisporum infection.
- 7. miR168- AGO1 mediates *V. longisporum* susceptibility in *Arabidopsis* by suppression of plant defence-related genes.

Acknowledgements

- Institute for Phytopathology, Kiel University, Germany Prof. Daguang Cai Prof. Joseph-Alexander Verreet Dr. Dan Shen Dr. Tim Thurau Dr. Tim Thurau Dr. Steffen Rietz Dr. Dirk Schenke
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences Prof. Shengyi Liu
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, China

Dr. Yu Wang Jie Qiu Enhui Shen Yang Liu

Thank for your attention!

1151150 10 101

141